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Hilbert-Transform-Derived Relative Group Delay
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Abstract—Many common types of microwave circuits, particu-
larly filters, are required to meet a group delay ripple specifica-
tion. This is normally measured using a vector network analyzer
(VNA) or some specialized test configuration. A new method of
assessing the group delay ripple of a broad class of microwave
circuits is presented, which uses a scalar network analyzer and a
form of the Hilbert transform. Experimental results illustrating
the usefulness of the technique are shown for a series of examples
and the principal sources of error are analyzed.

Index Terms—Hilbert transform, group delay, measurements,
minimum phase.

I. INTRODUCTION

T HE microwave and RF industry has seen a recent shift of
emphasis away from the low-volume high-cost military

markets toward the high-volume low-cost commercial markets
dominated by mobile telecommunications. This has caused
an increased demand for low-cost test equipment for these
high throughput production lines, leading to a new generation
of instruments, which can offer faster test cycles, increased
functionality, and application-specific test sequences.

This trend has also brought benefits to the measurement
of group delay in a production environment. The standard
equipment used for such measurements is the vector network
analyzer (VNA), which calculates the group delay by numeri-
cally differentiating the phase of S21 or S12. In recent years,
much effort has been targeted at increasing the sweep speed of
VNA’s ( 10-fold increase), while reducing the cost (50%
reduction) and simplifying the user interface for use by less
skilled operators.

Other techniques based on a modulation technique can also
be used in cases where the VNA-based method is inappropri-
ate. These techniques have been available for quite some time
[1], [2], but require the use of specialized hardware.

In general, group delay is a specified test parameter for
narrow-band sub-systems such as filters, as they exhibit sig-
nificant phase nonlinearities near their band edges. These
nonlinear phase characteristics can cause unacceptable distor-
tion in commonly used phase-sensitive modulation regimes,
and must be controlled.

In most cases, such components can be specified in terms
of group delay ripple, rather than the actual value of the group
delay function. The work presented in this paper uses the
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Hilbert transform and scalar transfer function measurements to
enable the assessment of the actual group delay of a test circuit
minus some constant [3]. That is, a new numerical technique
is presented, which enables the measurement of the group
delay ripple of a broad class of microwave circuits from scalar
measurements. Results are shown, which indicate that the
proposed technique provides a low-cost method of assessing
group delay ripple, which should be of wide applicability.

Details of this technique will be presented in this paper.
Section II deals with the background theory and outlines the
limitations on the applicability of this technique. Section III
outlines the implementation of the algorithm, and results are
presented in Section IV. In Section V, the main sources of
error are discussed and analyzed.

II. THEORY

It is well known that the shape of a filter’s magnitude
function is directly linked to the shape of its phase- or group
delay function. This relationship is known as the Hilbert
transform and has been widely used to predict the phase
response of a filter from its magnitude specification [4]–[8].

A common form of the Hilbert transform relates the phase
of a minimum phase function to its magnitude response [5]
as follows:

(1)

where is the phase of the transfer function,
, and is the linear magnitude of the transfer

function.
In many cases, however, the frequency response is known

over a narrow range of positive frequencies (betweenand
, for example), so that a reduction in the limits of integration

are required, which will give a new phase function .
This function will be the phase response of anequivalent
minimum phase network, given by

(2)

This integral can be interpreted as a convolution and solved
by the use of Fourier transforms [9], [10]. This can be
implemented numerically by using the fast Fourier transform
(FFT) for the sampled magnitude data produced by a scalar
measurement or calculation, and by analytically solving the
Fourier transform of , to give a fast compact algorithm [3]

(3)

where, is the new transform-domain variable.
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Fig. 1. Periodic extension of�(!) to yield �
0(!) for a bandpass filter response measured betweenF l andFh.

Since the FFT is inherently periodic, some approximation
has been made to the infinite integral of (1). By treating the
functions of (3) as periodic, having been sampled over one
period [between the limits and given in (2)], the nature
of this approximation can be shown. Applying this periodicity
and deconvolving (3) yields

(4)

where is the periodically extended version of , as
shown in Fig. 1. This form is known as the periodic Hilbert
transform [5].

For example, in the case of a truly periodic function, the
response of a cascade of lossless commensurate lines, (2) and
(4) are equivalent if has been sampled over an integer
number of periods. In general, however, this is not the case,
and the error introduced by periodically repeating the function
must be assessed. Since the nature of the function is not known
a priori, this assessment must be performed experimentally.
This is discussed in Sections IV and V, in the context of
measured results and simulated data. Having thus computed
this new phase function, the associated group delay may be
calculated by differentiation.

The formulation given in (1) is strictly applicable only to
minimum phase functions. That is, functions which have all
their poles and zeros in the left-hand side of the complex
frequency plane, including the axis (i.e., the closed left
half-plane). This would be the case, for example, for ladder
networks, but not for lattice networks [6].

This definition is most meaningful in terms of lumped
networks, but for networks which contain noncommensurate
or lossy transmission lines, the meaning becomes unclear.
However, it is helpful to say that if a distributed circuit

can be accurately modeled by a lumped ladder network of
arbitrary complexity over the frequency band of interest, then
the magnitude and phase of that network are related by the
Hilbert transform. This can be broadly interpreted as a network
with one principal signal path from input to output [6].

While it is true that most microwave circuits where the
group delay ripple is of interest can be modeled with a ladder
network, there are some types of filters which incorporate
delay equalization, which would require anonminimum phase
lumped approximation. In such cases, this technique may
not be applied. Although this implies that it is difficult to
definitively predict whether this technique can or cannot be
applied to a particular circuit or system, such narrow-band
delay equalization is usually intentional, so that the circuit
designer should be able to identify cases where the technique
presented here is unsuitable.

It is also suggested that this technique should be used as
a substitution-type measurement. That is, if a company is
involved in the production of tuned filters, for example, then
one filter can be tested using a VNA, and this result compared
with the same filter tested on a scalar network analzer (SNA)
using this technique. If a constant offset is observed (which
will normally be the case), then all the filters in the production
run can be tuned and tested using the SNA-based method.

III. I MPLEMENTATION

A further implication of the periodic nature of the FFT as
discussed in the previous section, is that the last data point
in the input array will effectively be followed by a repetition
of the data array (see Fig. 1). A discontinuity (or a sudden
change of slope) between the end of the data and the start of
the repeated data will appear to be a sharp change in the first
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Fig. 2. Padding used for 2.4-GHz harmonic reject filter using the standard technique (BP ) and the modified low-pass technique (LP ).

derivative of the circuit function. This will cause a “ringing”
effect throughout the data array after the FFT [11].

In this paper, the raw data to be used is produced by an
SNA (or other magnitude measurement system), and will not,
in general, have 2 data points, as required by standard FFT
routines [12]. Thus, an opportunity exists to add additional data
points to the raw-data array to eliminate discontinuities in the
function and its derivatives without the need to modify the

raw data with windowing functions. This approach was found
to give good suppression of the effects of discontinuities at
the ends of the data array.

The problem can then be viewed as one of interpolating
between the end of the data array and the start of the repeated
array. The interpolating function should be continuous (and
continuous in its first derivative) with the start and end of the
data array, while causing the minimum perturbation within the
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Fig. 3. Group delay and HGD of 1.9-GHz bandpass filter.

interpolation zone so as to reduce the effect on the original
frequency range of interest. Several possible interpolation
functions were experimentally tested and a good compromise
between simplicity and efficacy was found by using a cubic
function.

This interpolation works best for a bandpass filter function.
However, when it is applied to a low-pass function, the
interpolated data can have a profound effect at the edges
of the measurement band. Such distortion at the upper edge
will effect the group delay in the stopband, which is of
little consequence. At the lower edge, however, this effect
will distort the group delay calculated for the lower end of
the passband. To circumvent this problem, the data array is
doubled in size by reflecting it about the low-frequency point.
This is analogous to treating the low-frequency point as dc and
extending the function symmetrically into negative frequency.
Since the data array is now symmetric, the cubic interpolation
function is replaced with a quartic function. This modified low-
pass interpolation technique is shown graphically in Fig. 2.

A similar technique is applied to the high-pass case, where
symmetry is obtained by reflecting the data array about the
maximum measurement frequency. This has no simple theo-
retical analogy and is essentially a numerical manipulation to
reduce the effects of the interpolation function.

The data, having been thus preconditioned, is passed to the
core algorithm, which is an implementation of (3). This yields
the phase function for a new minimum phase network, which
is then numerically differentiated using the central difference
technique to yield the group delay of the new minimum
phase network. This group delay function has been termed
the Hilbert-transform-derived relative group delay (HGD) [3],
[13], [14].

It is interesting to note that if no smoothing is applied to the
magnitude data or the derived HGD data, then the aperture of
the HGD calculation is simply . Applying smoothing
before or after the calculation will increase the aperture in the
normal way.1

IV. RESULTS

The above technique has been coded into a PC-based
C program, which has been used in conjunction with a
control program to extract the scalar measurement data from
a commercial SNA to produce the results described in this
section.

As noted in Section II, the HGD calculated using the above
technique will not, in general, be equal to the group delay
function of the network under test. However, experiments with
both simulated and measured data have shown that in most
cases, the difference between the actual group delay of the
network and the HGD is approximately a constant across the
band of interest. That is, the HGD is the group delayrelative
to some unknown constant delay. The HGD, therefore, enables
an analysis of the group delay ripple of the test circuit, rather
than determining the actual group delay.

To illustrate this constant offset, some typical results are
presented. The test results shown in Fig. 3 are for an edge-
coupled microstrip bandpass filter, while Fig. 4 shows the
results for an all stub band stop filter. In both cases, the
HGD is compared with the group delay measured directly
using an HP8510C VNA. The band-stop filter was designed to
suppress the harmonics of a 2.4-GHz signal and is essentially

1HP8510C Operating and Programming Manual, Hewlett-Packard, Santa
Rosa, CA.
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Fig. 4. Group delay and HGD of 2.4-GHz harmonic reject filter.

Fig. 5. Block diagram of down-conversion system.

a low-pass filter with an extended stopband response. Fig.
4 shows the HGD calculated using both the standard cubic
interpolation technique and the modified low-pass technique
discussed in Section III. In Fig. 4, these are denoted HGD(BP)
and HGD(LP), respectively.

It is interesting to note from these results that the VNA-
based measurement becomes masked by noise when the inser-
tion loss becomes high. The HGD data, however, is not based
on direct phase measurements and appears to be less sensitive
to measurement errors at high insertion loss.

A very useful application of this technique is for the
measurement of the group delay ripple of a frequency trans-
lation system [13]. Such a measurement is impossible with
a standard VNA and specialized test equipment is usually
required [1], [2]. A down-conversion system (see Fig. 5)
was measured using this technique, and the results shown
in Fig. 6 compare the HGD of the entire system with the
group delay of the narrow-band 70-MHz filter used within

the system. The slight deviation from a constant offset in
this case is attributed to impedance mismatch within the
system.

The comparison between the HGD of a complete system
and the channelizing filter in this example is based on the
hypothesis that the group delay ripple of such a system
is dominated by the narrow-band components within that
system. The broad-band components (some of which are
known to be nonminimum phase) having been assumed to
present a relatively constant delay over the bandwidth of the
filter.

This hypothesis is further explored by comparing the
HGD and group delay of the bandpass filter used in Fig.
3 cascaded with a branch line coupler, which is known to
be nonminimum phase. Since the bandwidth of the coupler
is of the same order as that of the filter in this case, the
deviation from a constant delay offset is quite pronounced,
as shown in Fig. 7. This shows the limitations of this
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Fig. 6. Group delay of 70-MHz filter (VNA measurement) and HGD of complete down-conversion system.

Fig. 7. Group delay and HGD of 1.9-GHz bandpass filter cascaded with branch line coupler.

technique in cases where a nonminimum phase response is
apparent.

The results shown above illustrate the existence of an
approximately constant offset between the HGD and the group

delay of a broad class of important types of circuit. In these,
and many other cases, the HGD technique can be used to
measure the group delay ripple of a network using fast and
inexpensive test equipment.
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Fig. 8. Group delay of S21 (SIM_GD), HGD of associated magnitude function (HGD) and difference (ERROR) for a simulation of a low-pass filter.

V. ERROR SOURCES

The sources of error in this technique can be broadly split
into two categories:

1) errors arising from the numerical algorithm used;
2) errors inherent in the scalar measurement system.

Errors of the first type will be primarily due to the periodic
extension of the band-limited data. To examine these errors,
it was necessary to eliminate all sources of error arising from
the scalar measurement system used. This was achieved by
using magnitude data generated by a simulation of a lumped
element filter (lumped elements were used as the relationship
between magnitude and phase is exact for all frequencies).
By comparing the HGD calculated from the magnitude of the
simulated S21 to the directly simulated group delay function,
the error can be quantified. Such a comparison for a simulation
of a lumped element low-pass filter is shown in Fig. 8.

The difference between the HGD and the simulated group
delay is approximately a constant (50 ps) in the filter passband,
and accounts for part of the offset between the actual group
delay and the HGD apparent in the earlier examples. If the
upper frequency boundary of the simulation were extended,
this difference would decrease, tending toward zero as the
boundary approached infinite frequency. Similarly, by decreas-
ing the upper boundary, the difference would increase and
would begin to deviate significantly from a constant if the
boundary began to impinge on the filter passband.

There is, therefore, a compromise between measurement
bandwidth and accuracy. A pragmatic approach would suggest
that the upper boundary should be selected such that the filter
response is measured beyond its cutoff frequency and should

include some of the measurement noise floor. Measuring
beyond this usually contains no information about the filter
response, but is merely a measurement of the noise floor.

Errors arising from the measurement system are much
more difficult to quantify as they cannot be easily isolated.
Such errors include: 1) the quantization error of the sampling
circuitry; 2) errors due to amplitude or frequency instability
of the swept source; and 3) mismatch uncertainty and errors
induced by the presence of noise. The errors caused by
quantization and source instabilities are usually very small and
difficult to accurately quantify.

However, the errors due to the presence of noise, can be
significant and require some attention [14]. Random noise in
the magnitude data will translate into noise in the phase data
calculated by the Hilbert transform. This will then be exagger-
ated by the differentiation procedure required to calculate the
HGD. This gives rise to the small perturbations present in all
the HGD plots shown earlier, but is comparable to the noise
present in the vectorially measured group delay.

Errors can also arise due to a flat noise floor, which accounts
for part of the offset between the HGD and the group delay. To
analyze this effect, recourse to simulated data is again required.

If the magnitude error function is denoted (expressed
in nepers) and the corresponding error in the equivalent mini-
mum phase function is denoted , then the phase function
calculated from the magnitude function in the presence of
noise is given by

(5)

so that, since the Hilbert transform is a linear transform

(6)
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Fig. 9. Magnitude of S21 (Ideal), associated linear noise function (Noise), and summation (Ideal+Noise) for a simulation of a low-pass filter.

If is a constant, either in nepers or decibels, then the
group delay due to the phase-error function will be zero. This
would correspond to a constant loss or gain in the scalar
measurement system. A constant noise floor, however, will
be linearly additive, so that the logarithms cannot be easily
separated. In this case, denoting and the
linear noise power as , the error function is given by

(7)

or

(8)

Using the simulation from the earlier discussion on errors
induced by the algorithm, a linear noise floor of 2 10
(corresponding to a noise floor at54 dB) was added to the
linear magnitude of S21. The HGD was then calculated for
three cases: the filter (as before), the filter response in the
presence of the noise floor, and the noise floor itself. The
relevant magnitude responses are shown in Fig. 9, and the
HGD functions calculated from these are shown in Fig. 10.
Again, a relatively constant offset is apparent in the HGD
from this contribution.

To explore the errors due to the noise floor further, an
experiment based on measured data was designed. The 2.4-
GHz harmonic reject filter was measured on an SNA and
a noise floor of 45 dB was linearly subtracted from it to
yield a corrected frequency response. These responses and the
effective logarithmically additive noise floor are shown in Fig.
11.

The plots shown in Fig. 12 show the HGD calculated for the
filter and the error contribution due to the noise floor. Again,
the error induced in the passband of the filter is quite constant.

It is important to realize that the subtraction of the noise
floor in this way will not, in general, yield the same result
as performing the measurement with a higher dynamic range
configuration. This is due to the assumption that the noise floor
is a constant linearly additive quantity with no random phase
effects in it, which is a gross simplification of the problem and
is simply used here to illustrate atypical noise floor induced
HGD error.

The errors due to mismatch uncertainty will arise in a
scalar measurement system because the effects of source and
load terminations can only be accounted for by the use of
vectorial data. These problems only arise where the return
loss of the device-under-test (DUT) is poor, i.e., usually in the
stopband of a filter. If the return loss is poor in the passband,
measurements of group delay are of dubious relevance as the
circuit performance will be rather different when used in a
system which offers terminations differing from those present
during the measurement.

Mismatch uncertainty is caused by multiple reflections from
imperfect interfaces between the source and the DUT at the
input port and between the detector and the output port,2

as shown in Fig. 13. The uncertainty during calibration and
the three most significant reflections during measurement are
normally considered,3 viz:

2Technical Seminar: Measurement Accuracy of Scalar Network Analyzers,
Anritsu/Wiltron, Morgan Hill, CA.

35400A Series: Scalar Measurement Reference Guide, Anritsu/Wiltron,
Morgan Hill, CA.
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Fig. 10. HGD of S21 (HGD1), associated linear noise function (HGD2), and summation (HGD3) for a simulation of a low-pass filter.

Fig. 11. Measured insertion loss (MEAS), noise floor (NF), and corrected measurement (MEAS-NF) for the 2.4-GHz harmonic reject filter.

1) Calibration: Source and detector reflections only
;

2) Triple pass: Three times insertion loss, source, and
detector reflections ;

3) Detector: Insertion loss, detector, and port-two reflec-
tions ;

4) Source: Insertion loss, source, and port-one reflections
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Fig. 12. Calculated HGD and associated noise floor error (ERR) for the 2.4-GHz harmonic reject filter measurement.

Fig. 13. Multiple reflection at interfaces between source, DUT, and detector in a scalar measurement system, which give rise to the mismatch uncertainty.

where

source return loss;
detector return loss;
DUT input return loss;
DUT output return loss;
DUT insertion loss.

Each of these four components are calculated and converted
to linear equivalent reflection coefficients, then summed. This
yields the worst-case transmission loss uncertainty or the
maximum mismatch uncertainty or error (MUE), which can be
converted to a tolerance (in decibels), which define boundaries
within which the mismatch error must lie.

To examine the possible HGD error induced by such a
magnitude error, a C program was written to implement this

procedure using swept-frequency, insertion-loss, and return-
loss measured data. To implement the worst-case scenario,
a data file was generated containing points which changed
from the positive MUE limit to the negative MUE limit for
every second data point. This corresponds to the worst-case
summation of the mismatch errors (all error components in
phase with the measured signal) and the worst-case subtraction
(error components in antiphase with the measured signal).
It is extremely unlikely for any measurement to experience
such variations between every sample frequency, but gives an
absolute limit on the possible errors induced.

As an example, the 2.4-GHz harmonic reject filter (dis-
cussed earlier) was used. The plots of Fig. 14 show the
magnitudes of the measured return loss, insertion loss, and the
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Fig. 14. Measured insertion loss (MAG) and calculated mismatch uncertainty (MUE) for the 2.4-GHz harmonic reject filter.

Fig. 15. Calculated HGD and error associated with mismatch uncertainty (ERR) for the 2.4-GHz harmonic reject filter.

calculated MUE. The MUE was then passed through the HGD
software to determine the worst-case error in the HGD due to
mismatch. The plots of Fig. 15 show the HGD calculated for
the filter and that of the MUE. Since the data file for the MUE
alternated between the positive limit to the negative limit, the

padding routines used were insufficiently robust to prevent
algorithmic errors being incurred at the high frequency points.
The low frequency data, however, shows a relatively small
uncertainty, which peaks at approximately 50 ps at the band
edge. Since it would require an extremely unlikely series of



PERRY AND BRAZIL: HILBERT-TRANSFORM-DERIVED RELATIVE GROUP DELAY 1225

events for the error to reach this uncertainty, it is felt that this
is acceptable in this case.

VI. CONCLUSION

A technique has been presented which enables the auto-
mated calculation of a new circuit parameter known as the
HGD. This new parameter facilitates an estimation of the
group delay ripple of a circuit from scalar measurement data.
The program has been incorporated into a Wiltron 54 174A
SNA, which enables this calculation to be performed within
the equipment, thus enabling users to test their products using
fast and relatively inexpensive test equipment [14]. This will
be particularly useful in the tuning of filters since the SNA
will generally give faster sweep times than a VNA, thereby
reducing the time required to tune the magnitude and test the
group delay ripple of each component on a single piece of
equipment.

Another interesting application of the technique is for
the measurement of frequency conversion systems. Standard
VNA’s cannot easily make such a measurement, so many
manufacturers use a microwave link analyzer (MLA) or some
specialized test system for these measurements. The technique
presented here offers a simple low-cost solution, using readily
available equipment. Unfortunately, however, many frequency
conversion devices incorporate phase equalizers which cannot
be measured using this technique as they are nonminimum
phase networks.

An examination of the sources of error in this technique has
been presented, where the principle error sources have been
identified as:

1) periodic extension of data through the use of the FFT;
2) noise floor;
3) mismatch uncertainty.

Each of these has been investigated and found to give rise
to a nearly constant offset between the HGD and the actual
group delay as verified by VNA measurements or simulations.

Since the error sources are dependent on the DUT char-
acteristics, the frequency range used, the source and load
impedances, and the measurement dynamic range, a rigorous
analysis of the errors in this technique will require a great deal
of further research, and may be so complex as to be of little
practical use. It is, therefore, felt that by using the substitution
approach advocated here, this technique can be applied im-
mediately to several important measurement scenarios. This
approach is felt to be prudent, pending widespread use of this
technique and subsequent comparative studies.
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